

Agenda

Objectives and Introduction to the Financial Forecast Tool (FFT)

Assumptions and Charter Metrics

Results and Conclusions

Objectives

Part 1:

- 1. Explain why the city created the Financial Forecast Tool (FFT)
- 2. Explain **what** the FFT does and some of the significant assumptions
- 3. Share key **results** and conclusions
- 4. Questions, comments

Part 2:

- 1. Demo of the FFT
- 2. Discuss assumptions, technical details

Why did the city create a FFT?

Hint: It's not just about the numbers!

- Useful during transition and longer term operational tool.
 Focus on functionality, not the numbers. Cannot predict the future. It's about the TOOL itself.
- 2. User-friendly and simple to alter as requirements/expectations change. Ability to test sensitivities.
- 3. Forecasts for 20 years, can look at historical trends
- 4. Evaluates key financial metrics: cash flows, budgets revenue requirements, Debt Service Coverage Ratio (DSCR)
- 5. Forecast management/operational decisions

What the FFT doesn't do:

- Design Rates
- Generate Load Forecasts
- Power supply modeling
- Measure metrics of reliability, renewable energy, and carbon intensity
- Compare rates with peer utilities

Assumptions

Assumptions: Debt Service

Average Annual Proportion of Expenses = 12%

Debt Assumptions: 6 months before Day 1	Amount (2016\$)
Bridge loan for Day 1 start up costs	\$8.5M

Debt Assumptions: Day 1 (Jan 2018)	Amount (2016\$)
Acquisition	\$150M
Repayment of Bridge Loan + Repayment to General Fund (\$3.2M)	\$11.7M
Operating Reserves (Working Capital)	~ \$30M

Assumptions: Debt Service

Average Annual Proportion of Expenses = 12%

Debt Assumptions: Post-Day 1	Amount (2016\$)	
Separation Plan:	ĆEO ANA	
Issued over first 3 years	\$53.4M	
Start up/Transition Plan:	622 184	
Issued Beginning of Year 3	\$32.1M	
Capital Improvements:	\$59.2M	
Issued over 20 years	ا¥ا£.ورې	

Capital improvements & Undergrounding Long Range Plan is approximately \$120M over the 20-year forecast. Half is debt funded; Half funded through excess cash

Assumptions:

Operations and Maintenance (O&M)

Average Annual Proportion of Expenses = 12%

American Public Power Association (APPA) Selected Financial and Operating Ratios of Public Power Systems

Align with median benchmarks for Western Region and 20,000-50,000 customers

- Distribution O&M per retail customer
- Distribution O&M per circuit mile
- Customer accounting, customer service, and sales expense per customer
- Admin and general expenses per customer

Assumptions:

PILOT and Property Tax Reimbursement

Average Annual Proportion of Expenses = 5%

PILOT = Payment in Lieu of Taxes, Charter limited at 4%

Revenues to replace property tax revenues to County, BVSD, etc. that currently receive property tax from Xcel Energy ~\$2.2M/year

Assumptions: Power Supply

Average Annual Proportion of Expenses = **71**%

Three options included in FFT:

- 1. 4-year 100% Xcel then Gradual Departure
- 2. 4-year Xcel, then 100% renewable
- 20-year 100% Xcel

Assumptions: Sensitivity Tests

	Acquisition	Interest Rates (Taxable/Tax Exempt)	Debt Service Coverage Ratio (DSCR)	Annual O&M	Load Growth Rates
Low	\$150M	4.5/3.5	1.25	-20%	2.46%
Medium	\$150M	5.5/4.5	1.50	Median APPA	1.43%
High	\$214M	6.5/5.5	1.75	+20%	0.31%
Source	City Charter/Xcel Energy	Financial Advisor	Financial Advisor	APPA benchmarks	Xcel ERP (Vol. 2, Table 2.2- 2)

Charter Metrics: Assumptions

Revenue Requirement / Earnings Test

- Uses Xcel "all-in" rates forecasted for 20 years
- Revenue collection compared to revenue requirement
- Considers minimum debt service coverage ratio (DSCR), flags years where extra revenue is required to meet target DSCR level.

Cash Flow Analysis

- Uses rate forecast, assumes no additional revenues collected
- Additional amount collected for debt coverage included in available cash
- Cash used to build reserves, fund capital projects, etc.

Assumptions: Historic Revenues Collected

Overall Trend: 3.1% annual escalation 2003-2011: 6% annual escalation

Assumptions: Unanticipated Costs

How did the city account for unanticipated additional costs?

- 1) Costs before bonds are issued (ex: going concern)
 - Use FFT to determine if utility is still cost effective
- 2) Costs after bonds are issued (ex: stranded costs, natural disaster)
 - Cost savings could be used, in part, to absorb such costs should they arise.

Preliminary Results

Long-term cost savings

- Of the four scenarios published, three result in long-term cost savings, compared to remaining with Xcel
 - The savings are driven by relying on cheap renewable resources and accessing a less expensive power supply.
- The most expensive of the four scenarios would occur if the city were to buy all of its power from Xcel Energy for 20 years.

Preliminary Results

Meet or exceed charter metrics

• A city-operated utility could **meet each of the financial charter metrics** approved by voters in 2011 and 2013.

Preliminary Results

System improvements, local renewables, lower rates

- Long term savings could be used for:
 - Rate stabilization, lower rates
 - More rapid undergrounding or other system improvements
 - Investing in local renewable energy projects or other community identified projects.
- These dollars stay in the community and support meeting local goals.

Results

Scenario	Acquisition Cost	Power Supply
1	\$150M	4 years Xcel Energy, then gradual departure
2	\$214M	4 years Xcel Energy, then gradual departure
3	\$150M	4 years Xcel Energy, then 100% renewable
4	\$214M	20 years Xcel Energy

Results - Revenue Requirement/Earnings Test, DSCR min is 1.50		Scei	nario	
NPV of Savings/(Losses) \$ in (000s)	1	2	3	4
NPV of Savings/(Losses) over 5 years	\$ 13,781	\$ (4,463)	\$ 33,086	\$ (24,006)
NPV of Savings/(Losses) over 10 years	\$ 118,962	\$ 77,611	\$ 254,672	\$ (72,163)
NPV of Savings/(Losses) over 20 years	\$ 322,837	\$ 246,010	\$ 539,128	\$ (101,719)

Results - Cash Flow, no minimun DSCR set		Scei	nario	
NPV of Cash Flow \$ in (000s)	1	2	3	4
NPV of Cash Flow over 5 years	\$ 57,007	\$ 50,465	\$ 76,312	\$ 30,922
NPV of Cash Flow over 10 years	\$ 203,258	\$ 183,200	\$ 338,968	\$ 33,426
NPV of Cash Flow over 20 years	\$ 469,196	\$ 427,066	\$ 685,487	\$ 79,336
Debt Service Coverage at acceptable levels	Yes	Yes	Yes	No

Results

Results: Net Revenues over 20 years

What's Next?

- Continued community conversation
- Continue to run sensitivities as credible data is available to test current assumptions and/or outcomes to legal proceedings, etc.
- Welcome input, feedback, conversations about assumptions
- Schedule community "office hours" every two weeks to discuss, program new assumptions, review, etc.

Questions and Comments

Thank you!

Additional information as well as the full financial forecast tool are available for download at:

https://bouldercolorado.gov/energyfuture/financial-forecasting-tool

Part 2

Financial Forecast Tool Demo

Materials needed:

- 1) Quick Guide printed copies
- 2) FFT spreadsheet on your computer

WiFi

Network: FPC Private

Password: N\$ph1l1m

BULL PEN

Risks

	When will we	
Risk	know about risk	Possible Mitigation
		Evaluate Power Supply Options
Stranded Costs	Pre-Day 1	Evaluate rates over time against Xcel
		Evaluate levels of excess revenues;
		Evaluate rates over time against Xcel;
Reserves (working capital) building		Evaluate availability of short-term credit in event of large
from 3 to 6 months	Pre- Day 1	draw on reserves
Unanticipated Damages (Going		
Concern, Damages to the Remainder)	Pre- Day 1	Evaluate room in model under most likely scenario
		Evaluate where FFT can handle \$214M
		If higher than \$214M, would require alternative strategy
Acquisition Costs	Pre-Day 1	or vote
		Evaluate O&M, keep stable, adjust capital plan, reduction
		of power supply acquisition; Key Account Programs;
Loss of Load	Anytime	Contracts for Performance
		Evaluate O&M, keep stable, adjust capital plan, reduction
Large Self Generation/DSM	Anytime	of power supply acquisition
		Line of credit, access to other short-term capital
Significant failure early on	First five years	Evaluate rates over time against Xcel 27

How is this different from previous model (2013)?

- 1. Deterministic vs. Probabilistic
- 2. "Can we" vs "Should we"
- 3. Resource modeling
- 4. Xcel baseline
- 5. Carbon tax
- 6. Capitalized interest (deferred debt payments)

Modeled Financial Policies:

- Depreciation of capital expenses
- Debt Service Coverage Ratio (DSCR)
- Capitalized Interest
- Reserves plan to build over time

Charter Metrics: Assumptions

Major Assumptions – Static

Initial Year	2018
Payment in lieu of Taxes	3%
Capital Projects + Undergrounding	½ Debt fund, ½ Revenue fund over 20 years (~\$5.9M/year)
Pre-day 1 costs (6 months)	$^{\sim}$ \$8.5M (\$11.4M fully loaded on day 1)
Repayment to General Fund	~\$3.2M
Reserves (working capital)	3-6 months O&M
Start-up / Transition plan costs	~\$32.2M, tax-exempt in year 3
Separation costs	~\$53M over three years
Inflation	2%
Discount rate	5%

Charter Metrics: Conservative Assumptions

Built FFT to be very conservative, then adjusted some areas to be more realistic

- O&M moved to median APPA
- Capital Plan/Undergrounding –revenue fund over time to reduce debt funding
- Xcel's rate escalation
 - Environmental regulations requiring capital improvements
 - Carbon tax
 - Historic rate increases

Charter Metrics: Conservative Assumptions

% Change in Average Xcel Revenues (\$/kWh) 1999-2015

25.0%

20.0%

15.0%

10.0%

5.0%

0.0%

-5.0%

-10.0%

Overall Trend: 3.1% annual escalation 2003-2011: 6% annual escalation

200 201 201 201 2004 201 2006 201 2008 2009 2010 2011 2013 2014 2015

Load Forecast Risks

The load forecast assumptions presents two significant risks:

- 1. The use of Xcel system average data vs. Boulder-specific data.
 - This is relevant to both the number of customers per class as well as average annual usage per customer.
 - Any variation between Xcel and Boulder may result in higher or lower cost of service, revenue collection and purchased power costs.
- 2. The growth rate for number of customers and annual usage may vary substantially from City of Boulder estimates of population and job growth and Xcel estimates of long-term load growth.
 - As a result, annual revenue collection may be under- or overestimated.

The three purchased power scenarios present five risks:

- 1. Assumption that purchased capacity costs will be the same as the production formula rate if purchased energy is less than 100%
- 2. Assumption that OATT covers all ancillary services if purchased energy is less than 100%
- 3. Assumption that 50%-75% of energy requirements is available at Rush Creek price.
 - Rush Creek price is conservative: includes 90 miles of 345 kV transmission. Price may be lower at 245 kV (and if < 90 miles is constructed).
- Assumption that transmission service is available for energy not purchased from Xcel.
- 5. Assumption that stranded costs can be mitigated through one or more of the scenarios.

Xcel Retail Rates Risks

The Xcel Retail Rates forecast presents three risks:

- 1. The forecasts rely on rate design in the settlement agreement of the 2016 Xcel Phase II Rate Case.
 - Part of the settlement agreement envisions a transition to time-of-use rates and/or demand-based rates for all residential customers in 2019, following a test period between 2017-2019.
 - Absent reliable data on customer behavior change resulting from time-of-use and demand rates, the forecast bases revenue collection on the continued use of residential rate design without time or demand components.
- 2. It is unclear whether time-of-use and demand rates will generate more or less revenue than current rate design.
 - For purposes of complying with the charter metrics on rate comparability, it is therefore difficult to determine if BLP customers will prefer current rate design to time-of-use and demand rates.
- Rate forecasts are based on customer usage within each class, which is based on Xcel system averages vs. Boulder-specific averages. As such, the rates included may be too high or too low. 36

Results

Key differences between 2013 and 2016 (2018\$)			
Category	2013	2016	
Power Supply Cost (\$/kWh) ¹	0.073	0.078	
Transition Plan Costs - Debt Funded	~\$22M	~\$40.7M	
Separation Costs	~\$4.9M	~\$53.5M	
Median Debt Service Coverage Ratio	1.63	1.50	
Median Interest Rates % (Taxable/Tax Exempt)	6.5/5.5	5.5/4.5	
1. 2013 was "low cost" option, 50% wind/50% wholesale market; 2016 cost is 100% Xcel			

Results

Comparisions to what we get today through Xcel		
Category	Municipal Utility	
Energy Efficiency Drograms	Similar, \$5.3M/year, includes CAP tax replacement	
Energy Efficiency Programs	funding, under our control	
Undergrounding	More than double, ~\$2.2M/year modeled	
Increasing renewable energy	80% renewable electricity by 2030	
Reliability through accelerated	Higher CE2 EM congration plan CEOM capital plan	
capacity and system	Higher, \$53.5M separation plan, \$60M capital plan,	
improvements	\$114M undergrounding plan	